
Logicals, command aliases, and hotkeys Logicals

 Page 9 of 89

Logicals, command aliases, and hotkeys
Creating a macro script to automate some process in Surpac is an easy task to perform. However, having
this macro work consistently from any directory can be difficult. Using logicals when you develop
macros is crucial to achieving portability across directory structures. The use of command aliases and
hotkeys then provides you with a mechanism to quickly access and run common macros.

Logicals
‘Logical’ is a Surpac term that refers to the use of a known name to map to a physical directory. The
known name, or ‘logical’, is mapped to a directory on your hard disk at runtime. Using this system your
macros do not have to refer to a hard coded directory, which might be different on every installation of
Surpac, to access files.

For example, the logical name SSI_ETC: (the known name) can be mapped to a directory named
c:/users/Public/Gemcom/Surpac/63/share/etc on one system or s:/software/Surpac/v6/share/etc on
another. Surpac uses the known name SSI_ETC: to refer to the directory, this means it does not need to
know where this directory actually exists because it is mapped at runtime.

The reasons logicals are used are:

• to insulate the software from the file system

• to shorten notation for accessing long directory paths

• to standardise data

Logicals come in three types:

• System – defined in the translate.ssi file

• User – define in the SSI_ETC:logicals.ssi file

• Personal – defined in any file and specified to Surpac using the Customise > Default Preferences
function

System logicals are defined by the software installation procedure and are stored into a file that is
usually called translate.ssi. The system logicals are mandatory. You should never modify a system
logical. Below is an example translate.ssi file.

MACHINE=WIN32

SSI_ETC: c:\Documents and Settings\All Users\Gemcom\Surpac\61\share\etc\

SSI_STYLES: c:\Documents and Settings\All Users\Gemcom\Surpac\61\share\styles\

SSI_PLOTTING: c:\Documents and Settings\All Users\Gemcom\Surpac\61\share\plotting\

SSI_PROFILES: c:\Documents and Settings\All Users\Gemcom\Surpac\61\share\profiles\

SSI_HMF: c:\Program Files\Gemcom\Surpac\61\share\hmf\

SSI_MESSAGES: c:\Program Files\Gemcom\Surpac\61\share\msg\

SSI_REFMAN: c:\Program Files\Gemcom\Surpac\61\share\refman\

SSI_RESOURCE: c:\Documents and Settings\All Users\Gemcom\Surpac\61\share\resource\

SSI_JAVA: c:\Program Files\Gemcom\Surpac\61\share\java\
SSI_BIN: c:\Program Files\Gemcom\Surpac\61\nt_i386\bin\

SSI_LIB: c:\Program Files\Gemcom\Surpac\61\nt_i386\lib\

END

Logicals, command aliases, and hotkeys Logicals

Page 10 of 89

 Caution: Do not add user logicals to the translate file. This is because at each new installation of the
software this file is created and so you will lose any changes that you had made.

User logicals are optional and you can use them to make finding your macros and data easier. In the
same way that system logicals make it easy for Surpac to locate files, user logicals make it easy for you
to locate your data and macros. For example, you could define logicals to centralise the storage of your
survey pickups, or make a repository used to store all macros so that each user on a site can access
them using a consistent name. Using a logical to access macros and data using a standard naming
convention, where the physical location of files on a disk does not matter, can be very helpful when you
are working in a network environment, especially when users have different physical drive mappings.

User logicals are also a valuable tool when you are designing menu systems and macros. By using
logicals, the menu definitions and macros can be kept insulated from the file system because there is no
need to worry about physical drive mappings. This way when menus and scripts are transferred to other
computers, it is only the logical reference in the logicals.ssi file that needs to be changed and not the
actual script or menu definitions.

User logicals are defined in a file called logicals.ssi that is stored in the SSI_ETC: directory. This is a
system logical that maps to the directory where the etc files are stored. The logicals.ssi file is optional, if
this file does not exist is does not cause an error in Surpac. However, if it does exist then Surpac will load
the file and add any defined logicals to the system logical map.

Personal logicals are similar to user logicals except that they can be defined in a file with any name. For
example, you can store personal logicals in a file called mylogicals.txt .To make Surpac load a personal
logicals file you must define it in Surpac using the alias tab of the Settings form. You can access this form
by choosing Customise > Default preferences. The format of a personal alias file is exactly the same as
the logicals.ssi file.

When Surpac starts, it will load logical definitions in the following order:

1. System logicals from SSI_ETC:translate.ssi.

2. User logicals from SSI_ETC:logicals.ssi.

3. Personal logicals from your defined logical file.

If there are duplicate logical definitions then the last one read is the one that takes precedence. It is not
an error to define duplicate logicals and you might have good reasons to do so, such as redefining the
location of the SSI_PLOTTING: logical in your personal logicals file.

Below is an example of a logicals.ssi file or a personal logicals file.

MINESOLUTIONS: c:/minesolutions/

MS_SPOOLER: c:/minesolutions/spooler/

MS_STRING: c:/minesolutions/string/
MS_RINGKING: c:/minesolutions/ringking/

MY_MACROS: c:/macros/

The structure of the file is quite basic. You first define the logical name, leave some white space, this can
be one or more spaces, then define the physical directory mapping followed by a trailing slash.

Note: The trailing slash is mandatory, but it can be either a forward or backslash.

Logicals, command aliases, and hotkeys Command alias

 Page 11 of 89

Tips:

• Use the full colon at the end of each logical. It provides a consistent end-of-logical marker and
makes file paths easier to read when using logicals.

• Forward slashes are recommended over backslashes for your physical paths. Backslashes can
sometimes cause obscure problems due to their use as an escaping function in Tcl scripts.

• Make sure your physical directory names are correct; Surpac does not check to see if they
actually exist.

Task: Create a user logical

1. Open ConTEXT.

2. Choose File > New.

3. Determine the path name of your current working directory in Surpac.

Note: The pathname of the current work directory is displayed in the title bar of the Surpac window.

4. Define a logical called MY_WORK: that will map to the current work directory. Your definition
will look similar to the following extract from the default.ssi file:

MY_WORK: c:/Documents and Settings/All Users/Gemcom/Surpac/61/demo_data/tutorials/tcl_scl/

5. Choose File > Save As.

6. In the Save As form, navigate to the SSI_ETC: directory, and type logicals.ssi for the file name,
then click Save.

7. If you are running Surpac, exit and then restart.

8. Locate your new logical called MY_WORK: in the Navigator.

Note: All logical names are listed in the Surpac Navigator beneath the folder names in
alphabetical order.

Tip: If you cannot find your MY_WORK: logical in the list check that you have named the logicals file
correctly as described in step six. Make sure you know what the actual pathname for SSI_ETC is on your
computer. You can identify this pathname by finding the SSI_ETC logical in the Surpac Navigator and
expanding it.

Command alias
A command alias is a system that provides a mechanism for you to rename commands in Surpac to
something that you find more suitable or easier to remember. It is often quicker for experienced Surpac
users to make use of these short cut alias names than it is to type the full command name or find the
function on a menu or toolbar.

Command aliases are defined in a text file with a set syntax. First, the alias name is given, enclosed in
double quotes, followed by any amount of white space, and then the actual command name, enclosed
in double quotes. An extract from the distributed short.mst alias file follows:

Logicals, command aliases, and hotkeys Command alias

Page 12 of 89

"2DG" "2D GRID"

"2DT" "2D TRANSFORM"

"3DG" "3D GRID"

"3DT" "3D TRANSFORMATION"

"ATP" "ADD TO PERIOD"

"AR" "ADD RIG"

"AB" "APPLY BOUNDARY"

"AII" "ARC ARC INTERSECT"

"AD" "AUDIT DATABASE"

"BS" "BASIC STATISTICS"

"BD" "BEARING AND DISTANCE"

"BR" "BENCH REPORT"

Tip: When defining alias names that clash, the last one Surpac reads is the one that takes
precedence. There is no warning message for a duplicate name so be careful when writing your alias
file.

As well as allowing you to rename existing commands, the alias system also allows you to define new
command names that you can associate with your Tcl/Scl scripts. For example, if you have defined two
scripts, one to import a csv file and load into a database table, and another to export a database table to
a csv file, you can create keyboard commands that will run these scripts. The following alias file defines
two new commands import_csv and export_csv to run macros stored in the MY_WORK: logical.

"IMPORT_CSV" “MACRO:MY_WORK:IMPORT_CSV"
"EXPORT_CSV" “MACRO:MY_WORK:EXPORT_CSV"

Later you will learn how to attach these two scripts to menus.

Note: The keyword MACRO: is used in the path above. This keyword tells Surpac that it is not
mapping to an internal Surpac command but instead is going to run a Tcl script that is stored on the
hard disk. Notice the use of the logical MY_WORK: which will map to the actual directory path where
the macro is stored. This logical is assumed to be previously defined in logicals.ssi.

Surpac allows you to specify up to nine alias files.

To define an alias file in Surpac, choose Customise > Default Preference, select the Alias files folder and
enter the name of your alias file including any logical or physical directory name.

Logicals, command aliases, and hotkeys Command alias

 Page 13 of 89

Task: Create a command alias

1. Open ConTEXT.

2. Choose File > New.

3. Type the following line.

puts “Hello Surpac - this is my first script”

Note: Make sure you type exactly as shown, taking care with upper and lower case letters.

4. Choose File > Save As.

5. Navigate to the current work directory, and type hello.tcl for the file name, then click Save.

6. Choose File > New.

7. Now create a new command alias definition called HELLO that will run the script created in steps
2 and 3. Your alias definition in the editor should look as follows:

“HELLO” “MACRO:MY_WORK:hello.tcl”

Note: The MY_WORK: logical is the logical name created in the previous task. Using the
logical name as part of the alias definition means that the command will work from any
directory. If you do not use a logical the macro will work only if the current work directory is the
one the macro is stored in.

8. Choose File > Save As.

9. Leave the location as the current work directory, and type myCommands.txt for the file name,
then click Save.

Logicals, command aliases, and hotkeys Keymaps

Page 14 of 89

10. In Surpac, choose Customise > Default preferences. Then enter the full pathname to the alias
file you have created in steps 6 to 9.

11. Exit Surpac and then restart.

12. In the Function choose, type HELLO.

You should see the following output in the message window:

Hello Surpac - this is my first script

Tip: When defining alias commands to run scripts it is safer to make use of logicals as in the
example above.

Keymaps
The keymaps file is a historical file used in earlier versions of Surpac to map the keyboard keys to
characters. In Surpac, the only real purpose of the file is to define actions associated with the function
keys. You can use the keymaps file to define your own hotkeys to run scripts that you have written.

Using the csv example from the previous discussion of the alias, the following keymaps.ssi file extract
shows how to define hot keys on the F7 and F8 keys to run the import/export csv scripts.

"f7" FUNCTION "MACRO:MY_WORK:IMPORT_CSV"

"f8" FUNCTION "MACRO:MY_WORK:EXPORT_CSV"

Tip: When defining hot keys the key name must be in lowercase characters (for example, f10 not
F10).

Task: Create a hotkey

Note: This task assumes you performed the Create a command alias task in the previous section.

1. Open ConTEXT.

2. Choose File > Open, and open SSI_ETC:keymaps.ssi.

3. Scroll down and locate the section that defines the F1 through F10 keys.

4. Define a hotkey F11 to run the hello.tcl script by inserting a new line as follows:

“f11” FUNCTION “MACRO:MY_WORK:hello.tcl”

Note: The MY_WORK: section is the logical name created in a previous task. Using the logical
name as part of the hotkey definition means that the command will work from any directory.
Otherwise the hotkey would work only if the macro is saved in the current work directory.

4. If you are running Surpac, exit and then restart.

5. Press F11.

You should see the following output in the message window:

Hello Surpac - this is my first script

